Лекция 7. Оркестрация Kubernetes (введение): Pods, Services, Ingress, ConfigMaps, Secrets
Цель лекции: понять, зачем нужен Kubernetes для smart‑систем и микросервисов, освоить базовые сущности (Pod, Deployment, Service, Ingress) и практики конфигурации (ConfigMap/Secret), а также увидеть типовую схему развёртывания IoT‑платформы в кластере.
1. Почему Kubernetes
Docker Compose хорош для локальных стендов и учебных лабораторных, но в промышленной эксплуатации smart‑систем требуется:
• автоматическое восстановление сервисов при сбоях;
• масштабирование по нагрузке;
• безопасная доставка обновлений без простоя;
• управление сетью, доступом и конфигурацией;
• единый способ развёртывания на разных средах.

Kubernetes (K8s) — стандартный оркестратор контейнеров: он хранит и поддерживает “желаемое состояние” системы и автоматически приводит кластер к нему.
2. Архитектура Kubernetes (идея)
Кластер состоит из двух частей:
• Control Plane (управление): API server, scheduler, controller manager, etcd.
• Worker nodes (исполнение): kubelet, container runtime (containerd), kube-proxy.

Пользователь описывает ресурсы декларативно в YAML: “хочу 3 реплики сервиса A” — Kubernetes сам размещает и поддерживает эти реплики.
3. Pod: минимальная единица выполнения
Pod — группа из одного или нескольких контейнеров, которые:
• запускаются вместе на одном узле;
• разделяют сеть (один IP) и тома;
• часто содержат 1 основной контейнер + sidecar (прокси, лог-агент, метрики).

Pod — объект “эфемерный”: при сбое создаётся новый Pod, поэтому важное состояние держат во внешнем хранилище (PV/PVC).
3.1 Labels и selectors
Labels — метки key=value (например, app=ingestion, tier=backend). Selectors — правила выбора объектов по labels.
Service находит нужные Pods именно через selectors.
4. Deployment: реплики и обновления
Deployment управляет Pod‑ами для stateless сервисов:
• поддерживает заданное число реплик (self‑healing);
• выполняет rolling update (постепенная замена версий);
• позволяет откат (rollback).

Примеры stateless: API, ingestion, обработка событий, web‑UI.
5. Service: стабильный доступ к Pod‑ам
Pod‑ы имеют “плавающие” IP, поэтому нужен Service — стабильная точка доступа и балансировка.

Типы Service:
• ClusterIP — доступ внутри кластера (по умолчанию)
• NodePort — открывает порт на каждом узле
• LoadBalancer — внешний балансировщик (обычно в облаке)
• Headless — прямой доступ к Pod‑ам (часто для StatefulSet)
6. Ingress: вход в кластер по HTTP/HTTPS
Ingress маршрутизирует внешние HTTP/HTTPS запросы на сервисы внутри кластера через Ingress Controller (например, NGINX Ingress).

Возможности:
• маршрутизация по домену/пути (api.example.com → service api)
• TLS‑терминация (HTTPS)
• единая точка входа вместо множества NodePort.

Важно: Ingress типично применяется для web‑API/UI. Для MQTT/AMQP часто используют LoadBalancer/NodePort или специальные решения.
7. ConfigMap: конфигурация без пересборки образа
ConfigMap хранит несекретные параметры:
• адреса брокеров и БД, порты, имена топиков
• параметры логирования
• флаги режимов и лимиты

Подключение:
• как переменные окружения
• как файлы конфигурации через volume mount.

Плюс: можно менять конфигурацию без пересборки Docker‑образа.
8. Secret: хранение секретов
Secrets предназначены для:
• паролей к БД
• токенов
• TLS ключей/сертификатов

Secret можно подключить как env или как файл. Но важно: базовый Secret — это base64‑кодирование, а не “магическое шифрование”. Для реальной безопасности применяют:
• шифрование секретов в etcd
• внешние секрет‑менеджеры (Vault, KMS)
• RBAC и ограничение доступа по namespaces.
9. Типовая схема smart‑платформы в Kubernetes
Пример компонентов:
• mqtt-broker (Mosquitto/EMQX) — Service (ClusterIP/LoadBalancer)
• ingestion-service — Deployment + (опционально HPA)
• stream processor — Deployment (опционально)
• time-series DB — StatefulSet + PVC
• postgres (справочники) — StatefulSet + PVC
• grafana — Deployment + Ingress
• auth/API — Deployment + Ingress

Ключ: stateless сервисы — Deployment, stateful сервисы — StatefulSet + PV/PVC.
10. Практики эксплуатации (минимум)
• Probes:
 - livenessProbe (перезапуск при зависании)
 - readinessProbe (не пускать трафик, пока сервис не готов)
• Resources: requests/limits CPU/RAM.
• Namespaces: разделение dev/test/prod.
• RBAC: минимальные права.
• Observability: метрики Prometheus + дашборды Grafana, централизованные логи.
• Обновления: rolling update, canary/blue‑green (продвинутый уровень).
11. Частые ошибки новичков
• Считать Pod “постоянным сервером” и хранить состояние внутри него.
• Разворачивать БД без PVC → потеря данных при пересоздании.
• Открывать всё наружу через NodePort → небезопасно и неудобно.
• Хранить секреты в ConfigMap или в репозитории.
• Не использовать readinessProbe → трафик идёт на неготовый сервис.
• Не задавать requests/limits → нестабильность при нагрузке.
12. Итоги
• Kubernetes обеспечивает масштабирование, self‑healing и безопасные обновления микросервисов.
• Pod — базовая единица, Deployment — управление репликами, Service — стабильный доступ.
• Ingress — единая точка входа по HTTP/HTTPS.
• ConfigMap/Secret — правильное управление конфигурацией и секретами.
Самопроверка (9 вопросов)
• Почему Pod не должен хранить важное состояние внутри контейнера?
• Чем Deployment отличается от Pod?
• Зачем нужен Service, если у Pod есть IP?
• Какие типы Service вы знаете и когда какой выбирать?
• Что такое Ingress Controller и почему он нужен?
• Когда использовать ConfigMap, а когда Secret?
• Почему base64 в Secret не равно “шифрование”?
• Какие probes вы добавите в ingestion-service и почему?
• Какие компоненты smart‑платформы должны быть StatefulSet, а какие Deployment?
